3D スキャニングライダーの精度検証と洋上風況観測への応用*

Accuracy verification of 3D scanning LIDAR and application to offshore wind observation

間野 晶子** 上野 晃世** 糸﨑 俊介** 石原 孟*** Akiko MANO Akiyo UENO Shunsuke ITOZAKI Takeshi ISHIHARA

1 はじめに

近年、国を挙げて洋上における風力発電に期待が寄 せられている。風力発電所を洋上に建設するためには、 安全性および経済性の観点から正確な風況観測が不可 欠である。

しかしながら洋上における風況を観測することは一 般的に幾つかの課題がある。洋上風況塔については、 設計から許可取得、施工まで長期の工期に加えて、多 大なコストが掛かる。浮体式ライダーを用いる方法は、 任意の場所に設置可能であるが、海面の波による揺動 の影響を受けるため、精度の高い風況観測が難しい。 揺動成分を補正する手法の開発が現在進められている [1]。レーザーの照射方向を任意に変化させることので きる 3D スキャニングライダー(以下、3D ライダー) を用いる方法は、レーザーの到達距離の制約があるも のの、離岸距離が数 km~十数 km の範囲では適用可 能性が検討され、様々な研究機関や組織において計測 精度の検証がなされている。

これまで、DTU[2, 3, 4]、RES[5]の報告書、嶋田ら [6]、Simon ら[9]の論文では、計測精度の検証が行われ、 決定係数0.97程度の精度があることが報告されている。 ただし、レーザーの照射方向と風向が直交する場合は 精度が低下することも報告されている[2, 3, 4, 7]。また、 計測距離に応じてデータ取得率が下がることが報告さ れている[5]。正確な風況観測のためにはこのような計 測精度の検証が不可欠である。

本研究では、陸上風況塔を用いて 3D ライダーにお ける計測精度の検証を行った上、離岸距離 2 km程度ま での地点にて、洋上の風況観測を実施した。さらに鉛 直プロファイルの取得において、ある地点の 3 高度を スキャンして計測する手法と、スキャンせず一つの方 向の計測データを用いて補正する手法を提案した。

- ** 会員 株式会社レノバ エンジニアリング本部
- *** 会員 東京大学大学院 工学系研究科 〒113-8656 東京都文 京区本郷 7-3-1

2 3D ライダーによる計測

2.1 設置方法

本研究では、Leosphere 社の3Dライダー(WINDCUBE 200S)を用いて、風況観測を行った。Fig. 1に示すように3Dライダーは港湾区域内に設置している。精度検証のため風況観測塔(高さ約60m)は、3Dライダーから北西に1340m離れた海岸付近の地点に位置する。

Fig. 1 Location of the 3D lidar and the met mast

3D ライダーを設置した後に位置がずれてしまうと、 レーザー照射の向きが変化し、計測結果に影響を与え るため、強固な架台上に設置する必要がある。本研究 においては、Fig. 2 に示すようにコンクリート基礎の 上に H 鋼および縞鋼板を取付け、その上に 3D ライダ ーを設置した。

Fig. 2 Cross section of the 3D lidar mount

^{*} 令和元年12月5日第41回風力エネルギー利用シンポジウムにて 講演

また、レーザーの仰角および方位角は、数 cm の精 度で測量できるハードターゲットと比較することによ り調整を行った。本研究では PPI モード[8]を用いて観 測した結果、洋上観測範囲においては想定誤差が方位 角±0.11°、仰角±0.03°以下となった。これは観測 対象地点において、水平方向 3 m、鉛直方向 1 m 以下 の想定誤差となる。PPI モードで計測する平均化範囲 の水平距離 1085 m (1309 m 先 45° スキャン)に対し て非常に小さいことから、本研究の検証には影響はな いものとした。

2.2 データフィルタリング

3D ライダーにより取得したデータのうち、ノイズを 除去し、信頼性の高いデータのみを抽出する必要があ るため、CNR(信号対雑音比)、Mean Error(受信し たドップラースペクトルと機器側処理にて再構築され たスペクトル間の平均誤差)、および σ vr(測定中の風 速の揺れを反映した分散)により、データフィルタリ ングを実施した。それぞれのパラメータに対するキャ リブレーションによって閾値を決定し、信頼性の高い データか否かを判断した。例として、Fig.3には、デ ータフィルタリングを実施した場合としなかった場合 の24時間の視線風速を示し、データフィルタリングの 有効性を確認できた。

2.3 データ取得率

データ取得率を確認するため、本研究で使用した機器と同型のWINDCUBE 200Sを用いて、Table 1 に示す計測設定(FIXED モード)にて海方向を観測した。 データ取得率は、全ての計測データ数に対する、デー タフィルタリング後の計測データ数の割合とした。計 測期間は12日間で、この期間には近隣の気象台アメダ スによると雨の時間帯も5時間程度含まれる。仰角は 計測距離によるエアロゾル濃度の違いがデータ取得率 へ与える影響を除外するため、14000 m 先でも計測高 度が500 m に達しないように設定した。

Fig. 4 から、データ取得率は計測距離によって減少 する傾向がみられる。また、計測期間中、雨天時はデ ータ取得率が低下する傾向にあり、計測距離 4.5 km で 70%以下になる時間帯も見られた。期間中を平均する と計測距離が 4.5 km まではデータ 80%を超過した。 本研究ではデータ取得率が 80%を超える計測距離 4.5 km 以内で観測を行った。

Table 1 Scan	setting para	meter for	investigating
	data avai	ilability	

Scan type	FIXED	
Elevation angle	2 degrees	
Azimuth angle	approx. 280 degrees	
	(toward the sea)	
Horizontal distance	200~14000 m	

Fig. 4 Measured data availability during 12 days

3 風況観測手法および予測手法と精度検証

3.1 風況観測手法と精度検証

3D ライダー観測値の精度検証のため、1340 m 離れ た風況塔 57.5 m 付近位置を観測し、風況塔観測値と比 較した。計測設定値を Table 2 に示す。

Table 2 Scan setting parameter for observing the

met mast				
Scan type	PPI (sector scan)			
Sector size	45 degrees			
Elevation angle	2.5 degrees			
Azimuth angle	36.8 degrees			
Horizontal distance	1340 m			
Scanning speed	3 degrees/sec			
Azimuth separation	3 degrees per LOS (15LOS)			

PPI モード計測結果から風速風向を算出する手法は、 以下に示す Simon ら[9]の方法を採用した。 θ は各視線 方向(LOS)の方位角、風速を 2D ベクトル分解したもの を(u, v)とすると、以下のように表される。

- $\overline{u} = \frac{(\sum_{\theta_{start}}^{\theta_{stop}} (\hat{u}_r * \cos \theta) * \sum_{\theta_{start}}^{\theta_{stop}} (\sin^2 \theta)) (\sum_{\theta_{start}}^{\theta_{stop}} (\hat{u}_r * \sin \theta) * \sum_{\theta_{start}}^{\theta_{stop}} (\cos \theta * \sin \theta))}{((\sum_{\theta_{start}}^{\theta_{stop}} \cos^2 \theta) * \sum_{\theta_{start}}^{\theta_{stop}} (\sin^2 \theta)) (\sum_{\theta_{start}}^{\theta_{stop}} (\cos \theta * \sin \theta))^2)}$
- $\overline{v} = \frac{(\sum_{\theta_{start}}^{\theta_{stop}} (\hat{u}_r * \sin \theta) * \sum_{\theta_{start}}^{\theta_{stop}} (\cos^2 \theta)) (\sum_{\theta_{start}}^{\theta_{stop}} (\hat{u}_r * \cos \theta) * \sum_{\theta_{start}}^{\theta_{stop}} (\cos \theta * \sin \theta))}{((\sum_{\theta_{start}}^{\theta_{stop}} \cos^2 \theta) * \sum_{\theta_{start}}^{\theta_{stop}} (\sin^2 \theta)) (\sum_{\theta_{start}}^{\theta_{stop}} (\cos \theta * \sin \theta))^2)}$

方位角と視線風速から直接風速を求めると、Fig.5の ように直交する風向においても風速を再現でき、風速 成分から逆三角関数を用いることにより風向も再現で きた。

Fig. 5 Wind speed and wind direction with using least-square method

Fig. 6 に夏季の約 18 日間における 3D ライダー観測 値と風況塔観測値の風速の相関図を示す。

Fig. 6 Comparison of wind speed between 3D LiDAR and mast

平均風向に平行な角度(±45°範囲)においては、 決定係数は0.978 であり高い精度で観測できているこ とを確認した。平均風向に直交する角度(±45°範囲) においてはSimonら[9]やDTU報告書[3]が報告すると おり精度は低くなり、決定係数は0.948 であった。

3.2 風況予測を用いた洋上バーチャルタワーの検証 仮想的な洋上風況観測塔(洋上バーチャルタワー) を想定し、3 高度の洋上風況観測を実施した。観測対 象点は Fig. 1 に示した位置関係にあり、Table 3 の計 測設定にて観測した。観測の模式図を Fig. 7 に示す。

Table 3 Scan setting parameter for observing offshore vertical tower

	scan A	scan B	scan C
scan type	PPI (sector scan)	PPI (sector scan)	PPI (sector scan)
Sector size	45 degree	45 degree	45 degree
Elevation angle(ϕ)	4.6 degree	2.5 degree	6.7 degree
Azimuth range(θ)	299.7 degree	299.7 degree	299.7 degree
Horizontal distance	711 m, 1309 m, 1907 m	711 m	1907 m
Scanning speed	3 degree/s	3 degree/s	3 degree/s
Azimuth separation	3 degrees per LOS (15 LOS)	3 degrees per LOS (15 LOS)	3 degrees per LOS (15 LOS)

Fig. 7 Offshore virtual tower (Side view)

洋上バーチャルタワー位置における 3 高度の風況を 観測するためには、Fig. 7 に示すように観測点 B_62m、 A_110m、C_158m をそれぞれ観測する必要があるが、 このときスキャンの仰角が異なるために、データサン プル数は1高度観測時と比較して3分の1に減少する。 この問題を解決するため、洋上の風況は一般に一様と 考えられることから、観測点 A_62m、A_158mの風況 をそれぞれ補正して、観測点 B_62m、C_158mの風況 を得ることを試みる。

Fig. 8 および Fig. 9 に、A_62m と B_62m の相関お よび A_158m と C_158m の相関をそれぞれ示す。各々 の観測点における観測時刻は互いに 15 秒ずつ異なっ ているが、同時刻の 10 分平均値に変換して比較した。

Fig. 9 観測点 A_158m と C_158m の相関図

Fig. 8 および Fig. 9 から分かるように、A_158m と B_62mの風速はそれぞれ C_158m と A_62mの風速は より大きくなっている。これは、海面の粗度が陸面の 粗度より小さいため、沖にいくにつれ風速が大きくな ることによるものである。また Fig. 8 および Fig. 9 か らそれぞれの差は±3%以内に収まっていることから、 本観測地点においては、観測点 A_62m および A_158m はそれぞれ、観測点 B_62m および C_158m における 洋上の風況がほぼ一致していることが分かる。ここで、 観測対象点の鉛直プロファイルは、Scan A で取得した A_62m、A_158m の観測値を Fig. 8 と Fig. 9 に示す風 速比で補正して用いた。さらに精度の高い風速を得た い場合は、風向セクター毎に風速比をとり、補正係数 とすることが可能である。

Fig. 10 に、Scan A(補正)および観測点 B_62m、 A_110m、C_158m で得られた鉛直プロファイルを比 較した。αはそれぞれ 0.0116 および 0.0082 であり、 いずれも極めて小さいことが分かる。

Fig. 10 Observed vertical profile

4 結論

本研究では、洋上における風況を精度よく計測する ために、3D ライダーおよび陸上の風況観測塔を用いて、 各機器による観測結果を比較することにより、精度検 証を行った。また、3D ライダーによる洋上風況観測を 実施し、洋上風速の鉛直プロファイルを得た。本研究 から得られた知見は以下に示す。

- 3D ライダーの計測精度を高めるために、誤差が十 分小さくなるように測量による設置やハードター ゲットを用いた調整が重要であることが分かった。
- データ取得率は計測距離により変化するため、想定 計測距離におけるデータ取得率の検証が必要であ ることが分かった。
- 3)本研究サイトにおいては、ただ一つの仰角を用いた PPI 観測値を使用して、洋上鉛直プロファイルとみ なしても問題がないことを確認し、さらに鉛直スキ ャンによるデータサンプル数の減少という問題を 解決した。

謝辞

本研究の検討にあたり、東京大学山口敦特任准教授 にご協力を頂いた。また、調査実施近隣地区の各自治 会および関係者の皆様にもご協力を頂いた。ここに記 して心から謝意を表す。

参考文献

- A. Yamaguchi and T. Ishihara, A new motion compensation algorithm of floating lidar system for the assessment of turbulence intensity, J. Phys.: Conf. Ser. 753 072034, 2016
- [2] R. Wagner and M. Courtney, Comparison test of WLS200S-22 (Final), Høvsøre Test Site, Denmark, DTU Wind Energy LC I-046(EN), 2014
- [3] Leosphere and Avent, DTU validation campaign with the use of a 200S WINDCUBE Scanning Lidar, 2014
- [4] Leosphere and DTU, Executive Summary of Accuracy for WINDCUBE 200S, 2013
- [5] A. Clerc, et.al., Results of the OWA Dublin Bay Scanning LiDAR Trials, Resource Assessment, 2017
- [6] 嶋田進 ほか、洋上 WF 開発候補海域における風況精査手法の検討その1) デュアルライダー観測、第40回風力エネルギー利用シンポジウムにて講演、2014
- [7] L. Cameron, A. Clerc, S. Feeney, P. Stuart, Remote Wind Measurements Offshore Using Scanning LiDAR Systems, OWA Report, 2014
- [8] ゴイトジェイ プラカス、山口敦、石原孟、"スキャニングドップ ラーライダーの精度検証と風況計測への応用"、日本風力エネル ギー学会論文集, Vol.42, No.1, pp.7-16, 2018.
- [9] E. Simon, M. Courtney, (2016). A Comparison of sector-scan and dual Doppler wind measurements at Høvsøre Test Station – one lidar or two? DTU Wind Energy. DTU Wind Energy E, Vol.. 0112